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ABSTRACT 
 

     The heritage value of the mixed wood-masonry 18th century Pombalino buildings of 
downtown Lisbon is recognized both nationally and internationally. These buildings have a 
three-dimensional timber structure composed of wooden floors, stairs and walls intended to 
provide increased seismic resistance. The three-dimensional timber structure is enclosed in 
surrounding unreinforced masonry walls. The interior wooden walls are called “frontal” walls 
and their behavior under cyclic loading has hardly been studied. This paper describes the 
proposal of a hysteretic model for the cyclic behaviour of these Pombalino “frontal” walls. The 
hysteresis model, based on phenomenological approach,  aims to reproduce the response of a 
wall under general monotonic, cyclic or earthquake loading and is based on a minimum number 
of path following rules. The model is constructed using a series of exponential and linear 
functions. There are total of nine identifiable  parameters in this model to capture the nonlinear 
hysteretic response of the wall. These are all calibrated with experimental data. In particular, the 
analitycal model proposed herein is calibrated based on the experimental testing performed 
previously by the same authors. The model developed also accounts for characteristics such as 
pinching effect, strength and stiffness degradation that have been observed in the experimental 
data. 
 
 
1. INTRODUCTION 
 
     The heritage value of the mixed wood-masonry 18th century Pombalino buildings in 
downtown Lisbon is recognized both nationally and internationally. In 1755 a catastrophic 
earthquake followed by a major tsunami struck the capital of Portugal causing severe damage to 
the city. The event completely destroyed the heart of the city, which was set on a valley area 
close to the river Tejo and is composed of a shallow layer of alluvial material. The disaster 
required an urgent solution. The Prime Minister at the time, Marquis of Pombal, was put in 
charge of rebuilding the city and restoring it back to normality as fast as possible. He delegated 
to a group of engineers the development of a structural solution that would guarantee the 
required seismic resistance of the buildings. Based on the know-how of that time and on the 
empirical knowledge gathered from the buildings that survived the earthquake a new type of 
construction was created, which is now generally referred to as Pombalino construction. An 
example of the construction elements that compose a Pombalino building can be seen in Fig. 1. 
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Fig 1. Example of a Pombalino building (Mascarenhas, 2005). 

 
     This construction type is summarized below, based on Mascarenhas (2005). The buildings 
were built in quarters comprising each quarter an average of 10 buildings. The foundation 
system was ingenious; it is based on a system of wooden piles over the alluvium layers. The 
piles are similar and repetitive, on average 15 cm in diameter and 1.5 m in length. These form 
two parallel rows in the direction of the main walls, which were linked at the top by horizontal 
wood cross-members attached by thick iron nails. The construction at ground floor consisted of 
solid walls and piers linked by a system of arches. In more elaborate cases, thick groined vaults 
spanned between the arches, which protected the upper floors from the spread of any fire that 
might start at ground floor level. From the first floor up the basis of this building system is a 
three-dimensional timber structure called “gaiola” (cage), thought to be an improved system 
based on prior traditional wooden houses. The “gaiola” is composed of traditional timber floors 
and improved mixed timber-masonry shear walls (“frontal” walls) that would support not only 
the vertical loads but also act as a restrain for the seismic horizontal loading. However, no 
analytical models with any structural software have proven that so far and we have to assume 
the current lack of knowledge in predicting the role of these “frontal” walls in the seismic 
resistance of the buildings. Nevertheless, these “frontal” walls are one of the main speciousness 
of these buildings. They consist of a wooden truss system filled with a weak mortar in the empty 
spaces. 
 
   Very few data, analytical and experimental, exists on the behaviour of the “frontal” walls. 
Such data can be obtained from experiments consisting of physical tests of representative 
specimen. For this reason it is important to carry out experimental work that can further back up 
analytical computer models. The work of Meireles and Bento (2010) was the first to test the 



 

“frontal” walls under static cyclic shear testing with imposed displacements, where a specific 
loading protocol was used and vertical loading applied. The objective of the experimental work 
developed in the cited paper was, therefore, to obtain the hysteretic behavior of these “frontal” 
walls, by means of static cyclic shear testing with imposed displacements. These properties shall 
be used in developing an analytical hysteretic model of the structure, which is the scope of the 
present paper. 
 
 
2. HYSTERESIS MODEL  
 
2.1 Presentation of the model 
     An hysteresis model was developed based on a minimum number of path following rules that 
can reproduce the response of the wall tested under general monotonic or cyclic loading. The 
model was calibrated according to the experimental results obtained. The model is constructed 
using a series of exponential functions and linear functions. There are total of 9 identifiable 
parameters in this model to capture the nonlinear hysteretic response of the wall. Fig. 2. shows 
the assumed load-deformation behaviour of the wall. 
 

 
Fig. 2. Hysteresis model. 

 
2.2 Path following rules 
     The first step for obtaining a hysteresis model is to define the envelope curve. It is assumed 
that the envelope curve is independent of the loading history and coincides approximately with 
the stress-strain curve obtained under monotonic loading. Once the envelope is determined the 
loading and unloading paths must be described. Loading (or reloading) paths are identified as 
cases where both the displacement ,į, and the gradient, ǻį, of the displacement have the same 



 

signs (į*ǻį>0). In contrast, unloading paths correspond to cases where the displacement and the 
gradient of the displacement have opposite signs (į*ǻį<0). 
 
The path following rules are such that the structure loaded in the first cycle will draw the 
envelope curve. It follows an unloading path at a certain point and the loading in the opposite 
direction. A linear loading branch is defined in the model so as to have a transition between the 
point Z (figure 2) and the envelope curve when the structure is loaded in the opposite direction 
for the first time. The meaning of Z point will be explained later. Afterwards, when the structure 
is loaded again in the initial direction, it will reload with a reloading path which is not the same 
as the envelope path. When the structure reloading path reaches the envelope curve it means the 
structure is being loaded for the first time for those displacements; it happens then that the 
envelope curve is followed again. Again, unloading can happen at any point. 
 
In the following sections, the procedures for constructing the envelope, the loading/reloading 
and unloading curves within the model are discussed. For clarity of discussion the equations 
presented in the following sections are exclusively for positive displacement of the hysteretic 
loops. Implementation of these equations for the negative displacement region implies the 
reversal of the sign at certain variables and the use of absolute values in others. 
 
2.3 Definition of the envelope curves 
     The monotonic pushover response of the wall is modelled using one exponential and one 
linear function. The exponential function defines the ascending branch (exponential envelope) 
and the linear function the descending branch (linear envelope), see figure 2. The envelope 
curve is defined by 6 identifiable parameters that must be fitted to experimental data. The 
parameters, illustrated in figure 2, are F0, K0 , r1, r2 , įu and įult . The respective mathematical 
functions are the following: 
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The exponential function used to describe the ascending branch (1)(a) was fisrt proposed by 
Foschi (1974) and later used by Folz and Filiatrault (2001) in the modelling of wood shear walls 
response for the CUREE model. Beyond the displacement įu, which corresponds to the ultimate 
load Fu the load-carrying capacity is reduced. Failure of the wall under monotonic loading 
occurs at displacement įult. It has been assumed the wall’s monotonic deformation capacity įult 
is defined as the deformation at which the applied load drops to 80% of the maximum (ultimate) 
load Fu that was applied to the specimen. In this case, įult is already defined based on r2, įu and 
Fu. So, the number of identifiable parameters is reduced to 5. 
 
2.4 Definition of the unloading curves 



 

 
Fig. 3. Hysteresis model: unloading. 

 
Observation of the hysteretic loops of the walls tested in the work of Meireles and Bento (2010) 
reveals a curved shape unloading branch until the zero force intercept and a relatively linear 
branch from that point until the zero displacement intercept. It also reveals a degrading 
unloading stiffness if we consider this stiffness to be Ku in figure 3 (Ku1 to Ku3). This degradation 
is related to the point of the start of the unloading įou ; the unloading stiffness Ku is decreasing 
with increasing values of įou. An exponential function that is capable of capturing this fact has 
been defined. The mathematical formulation is the following: 
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The variables įou and fou are the initial unloading displacement and force, respectively. Equation 
(2) satisfies the boundary conditions F(į=įou) = fou and F(į=Įįou) = 0. The unloading 
exponential curve requires the knowledge of 2 identifiable parameters Į and Ȝu , which define, 
respectively, the displacement intercept point and the shape of the exponential curve. These two 
parameters must be calibrated with experimental data. The parameter Į is fixed for all the loops 
or for all values of įou ; on the contrary, the parameter Ȝu is not constant and will be a function of 
įou as will be explained later. During the unloading process, the variables įou and fou are known 
and thus are not parameters that need to be defined. 
 
When the unloading starts at point (įou , fou) it will reach the point (Įįou , 0). After this a linear 
function (linear unloading) is defined from this point until the point (0 , Z) where the force 
intercept parameter is called Z. From the observation of the experimental data we can see that 



 

the pinched hysteresis loops are very much close to passing through the same force intercept, 
although they do not exactly do so. For simplicity of the model it was assumed the same force 
intercept for all the loops. This parameter, Z, has to be calibrated with experimental data. 
 
2.5 Definition of the reloading curves 
     One important characteristic that could be observed in the response of these walls is the 
degradation of the restoring force, commonly known as strength degradation. In this situation, it 
is observed that the reloading curve does not reach the point of maximum displacement (įmax , F) 
at the envelope curve but instead is pointing to a point which is lower by a certain amount of 
force (for instance a). As a consequence of this the stiffness decreases also by a certain amount 
or it degrades (stiffness degradation). In the model defined, see figure 4, the strength 
degradation was estimated by calculating the force reduction parameter a for each level of 
damage. The damage is herein assumed to be related to the maximum drift attained so far and is 
a variable that is calculated at each loop based on all the history of the force-displacement 
response. In this way, a linear reloading curve is drawn from the point Z to the damaged point 
which stays below the point (įmax , F). At the beginning of a reloading path the initial point at y-
intercept, Z, in known. The force reduction parameter a is calibrated based on the experimental 
results and is not a fixed parameter varying with the accumulation of damage on the structure. 
 
 

 
Fig. 4. Hysteresis model: reloading. 

 
In this way, strength degradation is directly estimated but the stiffness degradation is indirectly 
accounted for in this modelling technique. In other models seen by the authors, as opposed, the 
strength degradation is indirectly accounted for. 
 
An aspect related to this modelling is the fact that for all the lower or equal values of damage 
associated to displacement at point Pi (įi

max , F i) the linear reloading curve will always point to 



 

the point Pi and never to a lower value. It can be said that no damage is seen for this point or 
before that. Point Pi is calculated as the point belonging to the envelope curve and the linear 
function that starts at Z and is tangent to the envelope curve. This is to avoid that the linear 
reloading curve has a low derivative for small initial values of displacement, when there is no 
assumed damage, or even to avoid it from having negative derivatives for very small values of 
displacement (given that the linear reloading curve starts at Z and not at origin). As a 
consequence, the reloading gradient Kl is constant until the point Pi and then decreases with 
increasing damage, see Fig. 13. The formula for determining įi

max (and thus the point Pi) and rl 
at point Pi is the following: 
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Where F(į) and E(į) are, respectively, the linear curve that goes from Z to Pi and the 
exponential envelope curve. 
 
 
2.6 Small cycle hysteresis 
     The rules previously described define complete loops, which are loops that undergo complete 
unloading. In order to have a more general model, one that could be subjected to any type of 
loading, and not restricted to cyclic loading, we need to account also for situations where 
reloading can happen at any place during the loading/unloading history. This leads to small 
cycle or incomplete cycle hysteresis. Crisafulli (1997) focused on the issue of incomplete cycle 
hysteresis when related to concrete elements and conducted tests on standard concrete cylinders 
with different combinations of complete and incomplete loops. The most important conclusions 
drawn herein were that the successive inner loops do not affect the plastic deformation and 
remain inside the cycle defined for the complete unloading and reloading curves. This is shown 
in the figure 5 below: 
 

 
Fig. 5. Typical cyclic response with small cycle hysteresis for concrete (Crisafulli, 1997) 



 

 
In the proposed model herein, because of the lack of any other information or data, it was 
simply assumed that the structure would reload with a linear branch (linear reloading small 
cycle) until it would reach the previously defined linear reloading branch. This would happen 
both if the reloading would take place at the exponential unloading branch or at the linear 
unloading branch. The new linear branch defined has the derivative K0, equal to the initial 
stiffness. The following figure 6 shows these assumptions. 
 

 
Fig. 6. Model assumptions for the small cycle hysteresis. 

 
 
 
3. CALIBRATION OF THE PARAMETERS 
 
     The parameters associated to the hysteresis model must be fitted to experimental data. This 
can be accomplished by least-square regression of the functions or by the averaging of point 
parameters. 
 
3.1 Force intercept parameter – Z 



 

The force intercept parameter is called Z. For simplicity of the model it was assumed the same 
force intercept for all the loops, which is not far away from reality. Based on the experimental 
data we can plot all the force intercepts, be they positive or negative, and obtain the average 

point Z. In Fig. 7. it can be seen all the force intercepts and the average value obtained for Z 
(Z=10.16). 

Fig. 7. Average force intercept point Z. 
 
 
3.2 Envelope curve parameters - F0 , K0 , r1, r2 , Fu , įult 
The values obtained for the envelope curve parameters can be seen in table 1. 
 

Table 1 Envelope curve parameters. 
F0 (KN) 37.00 
r1 0.04
K0 (KN/mm) 6.1
r2 -0.045
Fu (KN) 50.83

įult (mm) 
93.71 

(3.8% drift)
 
As explained before, failure of the wall under monotonic loading occurs at displacement įult. It 
has been assumed the wall’s monotonic deformation capacity,įult , is defined as the deformation 
at which the applied load drops to 80% of the maximum (ultimate) load Fu that was applied to 
the specimen. In this way, įult is already defined based on r2, įu and Fu. This corresponds to a 
ultimate drift of 3.8%. Accordingly, the couple values of ( Fu ,įu) and (Fult  ,įult ) are the 
following depicted in table 2. 
 

Table 2 Couple values of ( Fu ,įu) and (Fult  ,įult ) 
įu (mm) 56.68 įult (mm) 93.71
Fu (KN) 50.83 Fult (KN) 40.67

 
The value of K0 has been taken from the experimental initial stiffness at a displacement of 3 mm. 
The average value as been assumed based on the SC2 and SC3 test results (Meireles and Bento, 
2010). The values of F0 and r1 have been determined by least-square regression of the function 
envelope exponential. The following figure 8 shows the exponential envelope curve for the 
calibrated parameters and the corresponding experimental points for both negative and positive 



 

loading. Herein, it can be seen how well the obtained analytical exponential envelope curve fits 
the experimental envelope points. 

 

Fig. 8. Exponential envelope curve. 
 

The value of r2 has been calculated by least-square regression of the function envelope linear. 
Figure 9 shows the linear envelope curve for the calibrated parameter, r2, and the corresponding 
experimental points for both negative and positive loading. Herein, it can be seen how well the 
analytical linear envelope curve fits the experimental envelope points. 
 

 

Fig. 9. Linear envelope curve. 
 
 
3.3 Unloading curve parameters - Į, Ȝu 
     The value of Į is taken as the average of all the obtained experimental values of Į for positive 
or negative displacements. The value of Į is estimated as 0.55. The plot of figure 10 shows the 
values of Į as a function of the experimental unloading points įou (dou in the plot). Herein, it can 
be seen how well the value of Į fits the experimentally obtained points. 
  



 

Fig. 10. Unloading curve parameter Į. 
 
The value of Ȝu is the one defining the shape of the unloading exponential curve, as has been 
seen before. The plot of the values of Ȝu  as a function of the unloading point įou (dou in the plot) 
is shown in the figure 11. Based on these results, it has been decided that the parameter Ȝu 
cannot be a constant value but is better approximated by a logaritmic function dependent of įou  

(dou in the plot). The equation for Ȝu as a function of įou (dou in the plot) is given by: 
 

Ȝu=-0.087*ln(įou)+0.4593                                           (3) 
The figure 11 is found below: 
 

 
Fig. 11. Unloading curve parameter Ȝu. 

 
 
3.4 Reloading curve parameter – a 
    In the model defined, the strength degradation was estimated by calculating the force 
reduction parameter a for each level of damage. Figure 12 depicts the experimentally obtained 
values of a as a function of the maximum drift obtained so far. Herein the damage of the wall is 
associated to the interstorey drift of the wall. Inter-story drift is a key parameter for the control 
of damage in wood framed buildings (Filiatrault, 2002). In figure 12, the linear approximation 
by least–square regression is also presented for the parameter a. The equation of a as a function 
of the damage (maximum drift) of the wall is obtained as: 
 

a  = 5.0585*Drift - 0.0004                                               (4) 
 

Figure 12 is presented as follows.  



 

 
Fig. 12. Parameter a as a function of the damage. 

 
     As a consequence of the previous, we can calculate the reloading stiffness Kl (or the 
corresponding coeficient rl=Kl/K0). As has been explained previoulsy, the reloading stiffness Kl 
(or the corresponding coeficient rl) are constant until the point Pi. In the following plot of 
Fig.13. it is presented the reloading curve coefficient, rl, as a function of the damage (or the 
maximum drift). Herein rl at point Pi equals 0.375 (and the displacement, įi, at point Pi equals 
6.5 mm). The values of rl end for the maximum drift established of 3.8% associated to the 
colapse of the wall. 
 

 
Fig. 13. Reloading curve coeficient rl as a function of damage. 

 
 
4. EXPERIMENTAL VERSUS ANALYTICAL HYSTERESIS 
 
     A plot has been drawn for comparison of the hysteresis curves obtained experimentally and 
the hysteresis curve developed analitycally. A good matching is obtained as can be seen in 
figure 14. 
 



 

 
Fig. 14. Experimental versus analytical hysteresis. 

 
The accuracy of the model response is determined using one error indicator which is the 
cumulative energy error (CEE). The CEE is defined as: 

��

CEE  
CE test � CEanal

CE test

 

 
Where CEtest  and CEanal are the cumulative energy dissipation of the hysteresis of the 
experimental testing and of the analytical model, respectively. The cumulative energy dissipated 
by the wall, CE, is calculated as: 
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Where the subscript i is the ith force-displacement (F-į) data point. The total percent error in 
cumulative energy dissipated between the fitted model and the actual cyclic test data is 9% for 
the test SC2 and 14% for the test SC3, indicating a good match between the analytical model 
and the experimental results. 
 
 
CONCLUSIONS AND FURTHER WORK 
 
     A new hysteretic model for wood “frontal” walls has been developed. This is the first 
hysteretic model developed in the literature for such walls and thus its relevancy. The hysteretic 
model is governed by path following rules and is composed of linear and exponential functions. 
It is governed by 9 identifiable parameters. These parameters have been calibrated with 
experimental test results. The total percent error in cumulative energy dissipated between the 
fitted model and the actual cyclic test data is 9% for the test SC2 and 14% for the test SC3, 
accounting the good performance of the model. The model developed also accounts for 
characteristics such as pinching effect, strength and stiffness degradation that have been 
observed in the experimental data. 
 



 

     The results obtained herein are essential for further work in modelling the behaviour of such 
walls under monotonic, cyclic or earthquake loading. They are also necessary for the further 
work of the authors in developing a macro-element for “frontal” walls. This is to be 
implemented in a structural software, called 3Muri (www.stadata.com), which relates to the 
analysis of masonry buildings based on a macro-element approach (Lagomarsino and Cattari, 
2009). Also it will be predicted the hysteresis curve for other wall sizes (height and length), 
since in reality we can find different wall sizes in a single building. Further ahead the authors 
will model a complete building in 3Muri and make use of the developed macro-element to 
include the “frontal” walls.  
 
 
ACKNOWLEDGEMENTS 
 
     It is acknowledged the financial support of the Foundation for Science and Technology (FCT) 
in terms of a doctorate scholarship awarded to the main author, reference SFRH/BD/41710/2007.  
 
 
REFERENCES 
 
Crisafulli FJ, (1997) Seismic behaviour of reinforced concrete structures with masonry infils, 
Ph.D. Thesis, Department of Civil Engineering, University Canterbury, New Zeland. 
Filiatrault A, Isoda H, Folz B, (2002), Hysteretic damping of wood framed buildings, 
Engineering Structures 25, 416-471. 
Foschi RO, (1974), Load-slip characteristics of nails, Wood Sci., 7(1), 69-76. 
Folz B, Filiatrault A, (2001), Cyclic analysis of wood shear walls, Journal of Structural 
Engineering ASCE, 433-441 
Lagomarsino S., Cattari S. (2009). Non linear seismic analysis of  masonry buildings by the 
equivalent frame model. Proc. 11° D-A-CH  Conference: Masonry and earthquakes (invited 
paper), Zurich, 10-11  September 2009, pp. 85-100. ISBN 978-3-03732-021-1. 
Mascarenhas J., (2005),  Sistemas de Construcção V-O Edifício de rendimento da Baixa 
Pombalina de Lisboa, Materiais Básicos 3º Parte: O Vidro. Livros Horizonte (in Portuguese). 
Meireles H., Bento R., (2010), Cyclic behaviour of Pombalino “frontal” walls, 14th European 
Conference on Earthquake Engineering, pp.325, Ohrid, Macedonia. 
3Muri Program release 3.2.11 http://www.stadata.com (solver algorithm developed by 
Lagomarsino S., Galasco A., Penna A., Cattari S.) 


	Main

	Return


